Mathematics II

(English course)
Second semester, 2012/2013

Exercises (4)

1. For the function $f(x, y, z)=2 x^{2} y-3 y^{2} z$, find $f_{(2,-1,3)}^{\prime}(1,2,-1)$.
2. For each of the following functions, find the partial derivatives $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}$, and their respective domains.
(a) $f(x, y)= \begin{cases}x+y, & \text { if } x+y \geq 1, \\ e^{x y}, & \text { if } x+y<1 .\end{cases}$
(b) $f(x, y)= \begin{cases}\frac{x}{1+y^{2}}, & \text { if } y \geq-1, \\ -\frac{x}{2 y}, & \text { if } y<-1 .\end{cases}$
3. Show that the function $f(x, y)=\frac{x-y}{x^{2}+y^{2}}$ solves the equation

$$
x \frac{\partial f}{\partial x}(x, y)+y \frac{\partial f}{\partial y}(x, y)+f(x, y)=0 \quad \forall(x, y) \neq(0,0) .
$$

4. Consider the function

$$
f(x, y)= \begin{cases}\frac{x\left(1-e^{y}\right)^{2}}{x^{2}+(1-\cos y)^{2}}, & \text { for }(x, y) \neq(0, n \pi), \\ 0, & \text { for }(x, y)=(0, n \pi), \\ n \in \mathbb{Z}\end{cases}
$$

(a) Find the set of continuity points of f.
(b) Show that $f_{(u, v)}^{\prime}(0,0)$ is a well defined real number for each $(u, v) \in$ $\mathbb{R}^{2} \backslash\{(0,0)\}$. Compute its expression.
(c) Which are the values of $\frac{\partial f}{\partial x}(0,0)$ and $\frac{\partial f}{\partial y}(0,0)$?
(d) Is f differentiable at the origin? Why?
5. Consider the function $f(x, y)=\sqrt{|x y|}$.

Show that the partial derivatives $\frac{\partial f}{\partial x}(0,0), \frac{\partial f}{\partial y}(0,0)$ exist but f is not differentiable at the origin.
6. Find the set of points where the function

$$
f(x, y)= \begin{cases}\frac{x y}{\sqrt{x^{2}+y^{2}}}, & \text { for }(x, y) \neq(0,0) \\ 0, & \text { for }(x, y)=(0,0)\end{cases}
$$

is differentiable.
7. Consider the function

$$
f(x, y)= \begin{cases}\left(x^{2}+y^{2}\right) \sin \left(\frac{1}{\sqrt{x^{2}+y^{2}}}\right), & \text { for }(x, y) \neq(0,0) \\ 0, & \text { for }(x, y)=(0,0)\end{cases}
$$

(a) Show that f is continuous.
(b) Find $\frac{\partial f}{\partial x}(0,0)$ and $\frac{\partial f}{\partial y}(0,0)$.
(c) Compute the function $\frac{\partial f}{\partial x}$. Show that this function is not continuous.
(d) Show that f is differentiable at every point.
8. Consider the function

$$
f(x, y)= \begin{cases}y \frac{x^{2}-y^{2}}{x^{2}+y^{2}}, & \text { for }(x, y) \neq(0,0) \\ 0, & \text { for }(x, y)=(0,0)\end{cases}
$$

(a) Show that $f_{(u, v)}^{\prime}(0,0)$ exists for every $(u, v) \in \mathbb{R}^{2} \backslash\{(0,0)\}$.
(b) Compute the function $\frac{\partial f}{\partial x}$.
(c) Find the set of all points where $\frac{\partial f}{\partial x}$ is continuous.
(d) Show that f is not differentiable at the origin.

